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Introduction Concepts & Methods

The model incorporates nine different spatial datasets of

In recent decades, changing climate patterns and increasing rainfall variability have seen groundwater abstraction on a

global scale increase significantly (Green et al., 2011; Holman, 2006; Richey et al., 2015; Smerdon, 2017). Much of this in- groundwater vulnerability controlling parameters, specifically Groundwater
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well as the agricultural activities that provide food security to them (Famiglietti, 2014)). As a result, groundwater depletion, Aquifer Type (AQT)
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through a predetermined linear algorithm with an editable weighting scheme. This model can be run iteratively.

The final optimized scenario presented, best combines a strong alignment

with previous studies and weightings that are not skewed toward particu- Input Scenario: N oRES Emission UKMO-HadCM3 Lowest Ensemble of GCMs Highest Ensemble of GCMs
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bility, especially in areas where groundwater supplements domestic

supply and agriculture.

Comparative map showing an example scenario output (left) Ml/C-3/P-2 of current groundwater vulnerability with projected maps (50

years): (1) from the UKMO-HanCM3 GCM; (2) the lowXest ensemble of 16 GCMs and (3) the highest ensemble of 16 GCMs

Q: The model outputs can be forward projected for different time periods using different combinations of GCM scenarios. Figure 11 shows six possible outcomes under one
GCM, two GCM ensembles and two emission scenarios projected 50 years into the future. The GCM ensembles and emission scenarios show an average increase in the
m M Very high total area of very high vulnerability from 25.6% to 28.7% and high vulnerability from 24.9% to 25.9. Conversely, there is an average decrease of the total area of low vulnher-
0% Z:[g:L ability from 19.3% to 15.7% and very low vulnerability from 0.9% to 0.5%. It also indicates that Low emission scenarios (B1) represent less significant increases in very high
m B Low vulnerability areas and a more significant increase in moderate zones. All high emission (A2) scenarios result in an increase in the area of very high vulnerability zones.
0% | Verylow The most radical GCM ensemble (Low ensemble, A2) showed an anomalous increase in very high vulnerability areas from 25.6% to 41.0% (Fig. 12). Future predictions
B = - B B show substantially increased groundwater vulnerability of in the central regions of the country as well moderately increased groundwater vulnerability within the West-
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mate change showed the same regions of change but with increased severity. In this weighting scenario, almost all of the western and central regions have high vulner-

abilities and a significantly smaller area of the eastern regions have low vulnerabilities.

Groundwater vulnerability per water management area (WMA) produced from scenario MI/C-2/P-2 as a proportion of the total percentage

vulnerability per area. WMAs west of 25° E generally have increased vulnerability than those east of 25° E
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Conclusions

Increased groundwater abstraction on a global scale to support population growth and food security requires an effective method to assess
groundwater vulnerability to both depletion and deterioration in quality. The approach presented here addresses issues surrounding broad-
er concerns of groundwater vulnerability that more focused methods cannot constrain. Holistic regional groundwater vulnerability assess- B I G R I P
ments that incorporate the differentiation between shallow, actively recharged groundwater and deeper, fossil groundwater represent a ) @

step forward in utilizing regional isotopic tracers in groundwater vulnerability assessments. The resultant output of groundwater vulnerabil - crmmmm——

ity can be investigated across natural and legislative boundaries, providing a mechanism for baseline assessments of groundwater vulnera-

bility in transboundary systems as well as predicting how these vulnerabilities will evolve into the future. By viewing the sustainability of

groundwater in a shared light with the vulnerability of groundwater, there is an opportunity to develop adaptive and flexible groundwater Eauth Kfrican
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climate change can now be addressed in conjunction with traditional groundwater vulnerability assessments, mitigating the possibility of

underestimating the vulnerability of a resource when developing management strategies.



