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Critical raw materials as lithium or other metals and decarbonated ressources, such as low to mid-enthalpy geothermal energy, are key to the ongoing energetic transition.
Mostly located near plate boundaries (Moeck, 2014), geothermal systems undergo strong structural controls essentially through crustal faults, also known to drain fluids
(Duwiquet et al, 2021). Often seen as a nuisance in geothermal plants, dissolved metals in geothermal fluids can be exploited as a by products. This study aims at defining
spatio-temporal variations in metal content and the structural control along the Vallés-Penedés (VP) crustal fault, as a field analogue of a passive margin domain.
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« Fractured arkosic Miocene basin infill may

constitute a good reservoir (Fig. 4.B)
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« For hot springs Na/Cl is close to 1 (Fig. 7.B), waters might have percolated through evaporites or
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Figure 8: Conceptual model of the La Garriga-Samalls geothermal system

Conclusion Perspectives

. The low enthalpy system of To pursue this project several approaches are considered. First, to complete the
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