
2. Concept: Estimation of baseflow

Groundwater budget: (inflow = outflow + storage variations)
R = Q + Δstock
Ou
R = QET + Qbase + Qprofond + ΔStock

R : Recharge,
QET : Groundwater evapotranspiration,
Qbase : River baseflow, 
Qdeep : regional groundwater flow

Hypotheses:
- In steady state regime and stationnary climate/uses/soils/vegetation:  Δstock ~ 0
- Qdeep ~ 0 No observations of geochemical signature in large rivers
 R = QET + Qbase

Approach to estimate Qbase :
In a numerical flow model that does not simulate ET,
It is possible to adjust forcing (Rin) to simulate observed water
Levels, allowing to derive Rin = Qbase
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1. Context
- To anticipate the sustainability of groundwater uptake in hard rock aquifers requires comparison

to recharge and discharge

- In a context of global changes, both recharge AND discharge are relevant because departure from
equilibrium may rapidly impact water storage and the sustainability of groundwater uptake. 

- Numerous work is focused on estimating recharge (e.g. [1],[2], [3], [4] and IAH session 2.c 
contributions, but very few adress discharge processes

3. Methods
- A porous-media flow model (ParFlow) is applied over the whole West Africa

- Applied recharge flux is adjusted so as to match observed water table depths

- This applied recharge corresponds to baseflow and can be compared to total discharge as 
estimated from recharge values found in the littérature. 

Data
- A drill logs database allows to know the water table depth (N = 31549)
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4. ParFlow model configuration
- ParFlow: Richards equations [5], [6], [7]
- Resolution 1km², daily time step
- 11 cells in depth (Fig. 1)
- Hydrodynamic parameters:

- 0-2.5m: SoilGrids [8] and pedotransfer functions [9]
- 2.5-100m: GLHYMPS [10] modified (Ksaq. socle = 6.10-5m/s, Fig. 2)

- Forcings (Fig. 3):
- R = α * (Precipitation (P) – Evapotranspiration (ET))
- P and ET derived from GLDAS
- α = 1/50 obtained with manual calibration

- Steady state regime (2000 years)

6. Discussion

5. Resultats:

- Homogeneous behavior in hard rock 
areas (Fig. 4)

- Simulated water levels match 
observed ones for most of imposed
forcings (Fig. 5)

- Spatial distribution of water levels
show regional variations that could be
better simulated (Fig. 6)

- Qbase remains below 3mm/year

Conclusion
• Groundwater in hard rock is most likely

discharged through evapotranspiration

• These results are consistent with a weak
contribution of groundwater to rivers, 
depending on the climate. 

• Such results imply to explicitely account for 
land use and land cover change and climate
change that will impact evapotranspiration, 
but also to strengthen the knowledge of 
groundwater evapotranspiration .

Fig.1: Vertical mesh Fig.2: Logarithm of Hydraulic Conductivity Fig.3: Model forcing 

Fig.4: Simulated water table depths and drillings locations

Fig.5: Medians of observed and simulated water levels by ranges of Qbase

Fig.6: spatial means of agregated water level observed (left) and simulated (right)
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- From the total recharge (=total discharge Q) map from [2], one may
estimate the ratio Qbase / Q  (Fig. 7)

- Baseflow discharge is less than 4% of total discharge and often less than
2%

- This agrees with the absence of observation of geochemical signature of 
permanent water table in rivers (e.g. [11]) and previous modeling
experiment results [12]

Fig.7: Ratio Qbase / Qtotal (Qtotal from [2])

Sensistivity analysis:
- Simulations of a typical hillslope help understand the model 

sensitivity
- Results are highly sensitive to Ks, which need to be better

constrained through other approaches. 
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These estimates are maximums because: 
- Aquifer Ks in the model are overestimated (~1 order of magnitude) as compared to a littérature review [13] (8.10-7 – 1.7.10-5m/s)
- Riparian areas have high transpiration rates and may contribute to the lateral gradients in the water tables [14]. 
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