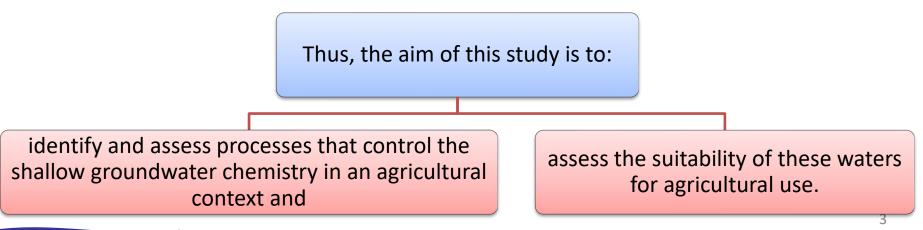


ORGANIZED BY IAH-CFH, UNESCO-IHP, THE FRENCH WATER PARTNERSHIP, UNDER THE PATRONAGE OF THE FRENCH NATIONAL COMMISSION FOR UNESCO AND WITH THE SUPPORT OF THE MINISTRY FOR ENVIRONMENT, SEINE-NORMANDY WATER AGENCY, AND SORBONNE UNIVERSITY

Hydrogeochemistry of shallow groundwater and suitability to irrigation case of Karfiguela paddy field in Burkina Faso


> Speaker: Dr. SAURET Elie Serge Gaëtan Institute for the Environment and Agricultural Research [INERA-CNRST], Burkina Faso

16/05/2022

- 1. INTRODUCTION
- 2. STUDY AREA PRESENTATION
- 3. MATERIAL AND METHODS
- 4. **RESULTS AND DISCUSSION**
 - 1. GROUNDWATER HYDROGEOCHEMISTRY
 - 2. GROUNDWATER SUITABILITY FOR IRRIGATION
- 5. CONCLUSION

1. INTRODUCTION

- Groundwater is an important and essential resource for survival and socio-economic development worldwide
- Shallow groundwater, neglected and underestimated are generally porous, unconsolidated and full of significant potential that can be used for various uses, including irrigation.
- Assessing the capacity of a resource to meet a need necessarily requires to assess its quantity and its quality.
- characterization of processes that control aquifer chemistry and identification of probable sources of ions and pollution are important for groundwater resources sustainable management.

2. STUDY AREA PRESENTATION

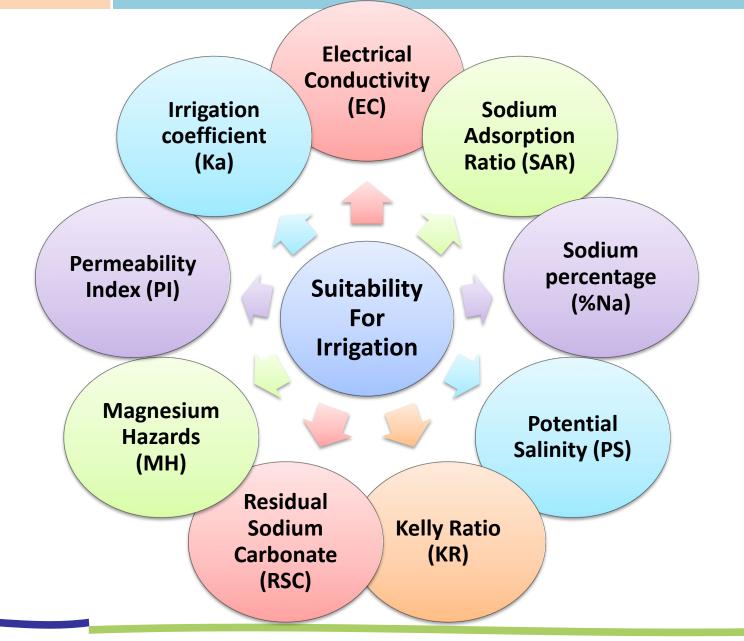
The study was conducted in the **Karfiguéla paddy field Located**: Burkina Faso (10° 38'N, 4° 50'W) to (10° 42'N, 4° 48'W)

- Climate: southern
 Sudanese P= 1040 mm,
 T= 17 °C to 36 °C
- Shallow aquifer: alluvial, sandy, gravelly and clayey materials
- Transmissivity in order of 10⁻³ m²/s
- Storage coefficients in order of 10⁻¹
- Average specific flow 17 m³/h

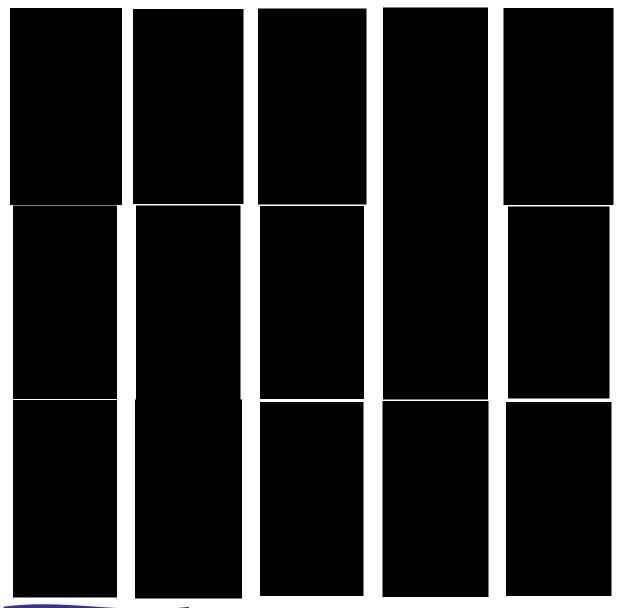
3. MATERIAL AND METHODS 3.1. GROUNDWATER HYDROGEOCHEMISTRY

pH, TDS and EC were measured in situ using AQUAREAD AP-2000 material. Major ions, minor ions and metallic trace elements analyzed by EDTA titration, atomic absorption, photometry and spectrometry.

Results interpretation Piper (Piper, 1944), Stiff (Stiff, 1951) and Gibbs

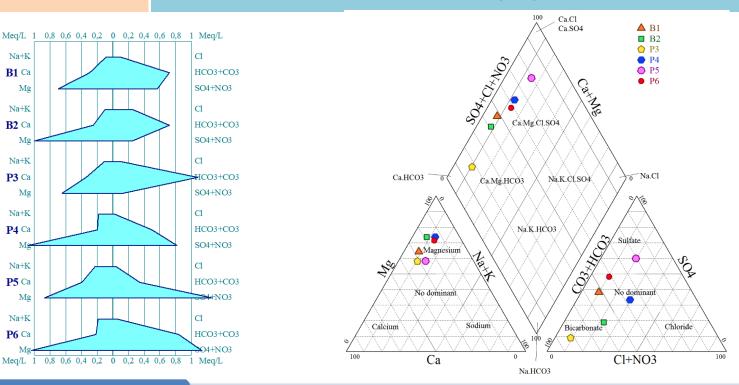

(Gibbs, 1970) diagrams were used for the determination of water

type and hydrogeochemical processes


Processes controlling the chemistry: factor analyses and bivariate plots

Spatial distribution: IDW interpolation method

3. MATERIAL AND METHODS 3.2. GROUNDWATER SUITABILITY FOR IRRIGATION



4.1. GROUNDWATER HYDROGEOCHEMISTRY (1/5)

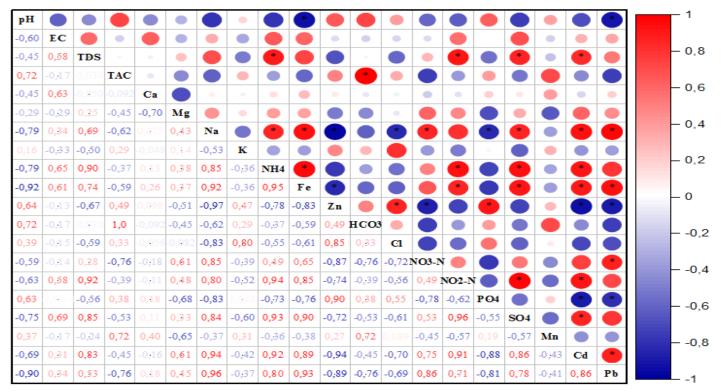
- low mineralization of the groundwater but a relative high variation and the large spatial variability of the physicochemical parameters.
- Concentrations respect
 FAO standards concerning
 irrigation water quality
 excepting nitrate (R.S. and
 Westcot, 1985).

4.1. GROUNDWATER HYDROGEOCHEMISTRY (2/5)

50% Ca-Mg-HCO₃

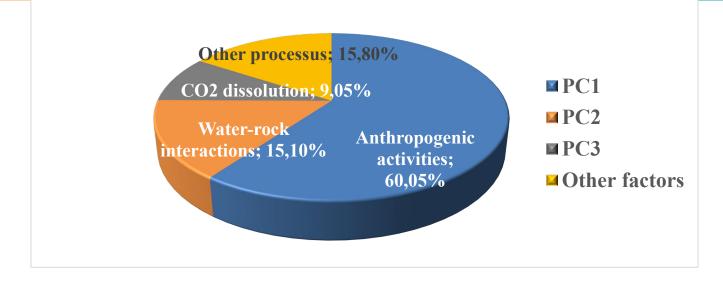
the most encountered in the tabular Infracambrian groundwater of Burkina Faso

50% Ca-Mg-Cl-SO₄


the most important in the study area and. Chloride presence would be the result of water contaminated by anthropogenic chlorides infiltration (Huneau et al., 2011; Kouanda, 2019)

4.1. GROUNDWATER HYDROGEOCHEMISTRY (3/5)

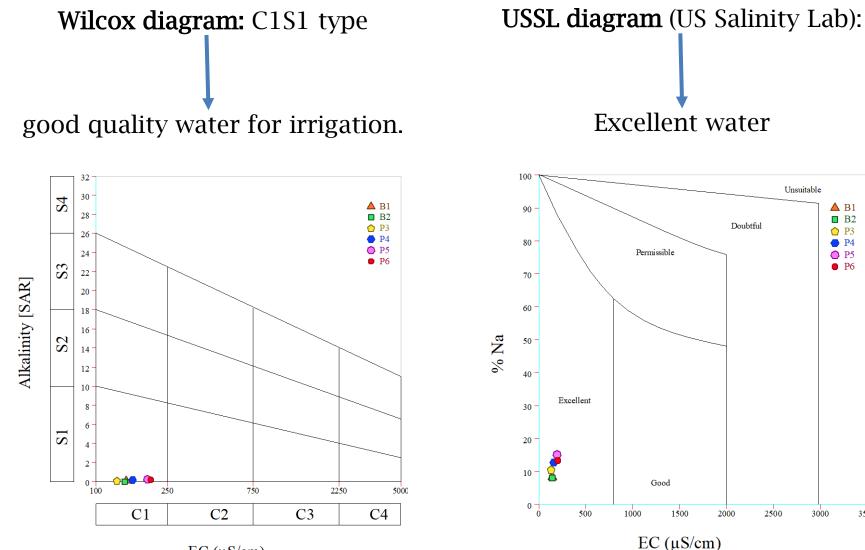
Attribute	PC1	PC2	PC3 0.025	
Na	0.977	0.018		
Cd	0.964	0.123	-0.185	
Fe	0.956	-0.201	0.143	
Pb	0.940	0.032	0.291	
SO4	0.921	-0.245	-0.099	
Zn	-0.920	-0.183	0.117	
NH4	0.918	-0.230	-0.121	
NO2-N	0.899	-0.101	-0.275	
pН	-0.814	0.233	-0.502	
PO4	-0.804	-0.341	0.015	
NO3-N	0.783	0.450	0.206	
TDS	0.764	-0.267	-0.540	
Cl	-0.732	0.062	0.278	
НСО3	-0.624	-0.216	-0.643	
K	-0.505	0.253	0.357	
Mg	0.504	0.777	0.019	
Ca	0.025	-0.836	0.477	
EC	0.439	-0.817	0.066	
Mn	-0.499	-0.354	-0.171	
Eigen value	11.41	2.87	1.72	
Var. Expl.	60.05 % (60 %)	15.10 % (75 %)	9.05 % (84 %)	


PCA result shows 3 process or a group of processes that explain the chemistry of the groundwater with respective variances of 60%, 15% and 9%, explaining 84% of the total variance

4.1. GROUNDWATER HYDROGEOCHEMISTRY (4/5)

- □ **PC1:** Positive and strong correlations between Na⁺, Cd, Fe, Pb, SO₄²⁻, NH4⁺, NO₂⁻, NO₃⁻ and TDS is an indicator of their common sources
- □ **PC2** strong positive correlation with Mg²⁺ and negative with Ca²⁺ and EC, showing that they do not have the same source.
- □ **PC3** is strongly correlated with pH, TDS and HCO3⁻ and pH and HCO3⁻ Tare also positively correlated

4.1. GROUNDWATER HYDROGEOCHEMISTRY (5/5)


- Anthropogenic activities represent the main source of groundwater mineralization. Positive and strong correlations between Na⁺, Cd, Fe, Pb, SO₄²⁻, NH4⁺, NO₂⁻, NO₃⁻ and TDS is an indicator of their common sources: agricultural (Sako et al., 2020) activities occurred in the paddy field.
- □ Water-rock interaction: (PC2) Ca²⁺ could therefore come from calcite or aragonite (CaCO₃) and Mg²⁺ from magnesite (MgCO₃) dissolution.
- □ CO₂ dissolution: This axis represents CO₂ dissolution process in water depending on the pH. The CO₂ comes from organic matter decomposition (Dakoure, 2003).

4.2. GROUNDWATER SUITABILITY FOR AGRICULTURE

- EC, SAR, %Na, PS, KR, RSC, MH, and Ka: 100% good for irrigation
- NO₃⁻⁻N and PI indicated that it is permissible
- MH: 100% unsuitable for irrigation and could lead to soil alkalinity

	Units	Values	Suitability		
EC	[dS/m]	58.7 ± 16.01	100% Excellent		
SAR		0.16 ± 0.07	100% Excellent		
NO ₃ ⁻ -N	[mg/L]	9.01 ± 9.51	50% Good 50% Permissible		
%Na	[%]	$11.30\% \pm 2.87\%$	100% Excellent to Good		
PS	[meq/L]	0.37 ± 0.15	100% Excellent to Good		
KR		0.10 ± 0.04	100% Excellent		
RSC	[meq/L]	-0.48 ± 0.36	100% Excellent		
MH	[%]	$75.10\% \pm 8.16\%$	100% Unsuitable		
IP	[%]	$73.10\% \pm 17.57\%$	50 % Suitable 50% marginally suitable		
Ka		651.74 ± 278.11	100% Suitable		

4.2. GROUNDWATER SUITABILITY FOR AGRICULTURE

EC (μ S/cm)

13

3500

4.2. GROUNDWATER SUITABILITY FOR AGRICULTURE

	Units	B1	B2	Р3	P4	Р5	P6	Recommended Maximum concentration (FAO)
Cu	mg.L⁻¹	0.00	0.00	0.00	0.00	0.00	0.00	0.2
Ni	mg.L⁻¹	0.00	0.00	0.00	0.00	0.00	0.00	0.2
Cr	mg.L⁻¹	0.00	0.00	0.00	0.00	0.00	0.00	0.1
Mn	mg.L⁻¹	0.00	0.00	0.01	0.00	0.00	0.00	0.2
Cd	mg.L⁻¹	0.00	0.00	0.00	0.03	0.04	0.05	0.01
Pb	mg.L⁻¹	0.00	0.00	0.00	0.07	0.12	0.06	5
AI	mg.L ⁻¹	0.00	0.00	0.00	0.00	0.00	0.00	5
Zn	mg.L ⁻¹	0.04	0.05	0.03	0.00	0.00	0.00	2

Toxicity and Trace Elements: Ni, Mn, Zn and Pb within FAO standard for irrigation water but Cd concentrations four times higher than the standard.

Karfiguéla Shallow Groundwater can be used without precautions on soil and crops that are not sensitive to sodium and with some precautions about nitrate, magnesium and cadmium toxicity.

5. CONCLUSION

Anthropogenic activities, water-rock interaction and dissolution of CO₂ were the major processes controlling groundwater chemistry

Karfiguéla shallow groundwater can be considered suitable for irrigation but the water quality should be monitored

Karfiguéla shallow groundwater is a way to increase the paddy field productivity.

MERCI POUR VOTRE AIMABLE ATTENTION