Session: Nature Based Solutions, Ecosystem Services and Groundwater. Links with the SDGs (Abstract 164)

Nature-based water storage in seasonal rivers in support of resilient livelihoods in semi-arid regions in Africa: Assessing the recharge and storage potential of the Toroka sand river in Kenya

Michel Frem

MSc, IHE Delft Institute for Water Education (The Netherlands) michel.frem@hotmail.com

Supervisory Committee

Prof. Michael McClain (Supervisor) Dr. Tibor Stigter (Mentor) MSc. Sospeter Wekesa (Mentor)

"Groundwater: Key to the Sustainable Development Goals" Conference Sorbonne University, Paris (Room 109) 18 May 2022 (12:15-12:30 PM CET)

Problem Statement and Significance

- NaBWIG: optimize ecological functions and storage capacities of natural systems.
- Rural communities in (semi)arid regions had historically relied on sand rivers (Hussey, 2007; Hamer et al., 2008).
- Important for agriculture (but **underutilized**).
- **Sustainable exploitation** of sand rivers:
 - Improve small scale agricultural productivity (SDG Target 2.3);
 - Sustainable supply of freshwater to address water scarcity (Target 6.4);
 - Adaption to climate hazards (droughts) (Target 13.1).

Rainfall-Runoff Analysis

- Higher CN, higher runoff potential.
- Spatially distributed CN method.
- Compared with surveys and RS results.
- Local knowledge:
 - Flooded river during April (100% of the participants)
 - Dry year: 11 surface runoff days
 - Typical year: 17 days
 - Wet year: 26 days

Soil drainage (data source: SOTER database for Kenya)

Summary of the runoff analysis results using CHIRPS rainfall data

	Dry Year			Average Year			Wet Year		
	CN = 73	CN = 70	CN = 76	CN = 73	CN = 70	CN = 76	CN = 73	CN = 70	CN = 76
unoff Occurrence (days)	4	3	6	8	6	11	20	18	27
/inimum runoff (mm/d) *	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
/laximum runoff (mm/d)	2.5	1.5	3.8	12.9	10.2	15.9	23.8	20.0	28.0
otal runoff (mm/year)	4.6	2.5	7.6	26.4	19.2	35.6	50.9	35.7	71.4

Surface Water Mapping

- Sentinel-1 data products (7 acquisition dates).
- Surface water during April (fully saturated).

Subsurface Characterization

Probing section for Elangata Wuas (near the shollow wells) Not and probing locations dotted lines indicate locations where more than 2m of sand was found

Storage Capacity

- Consumption rates (MOWI, 2005):
 - 10 L/capita/day
 - 50 L/livestock unit/day
- Demographic data (KNBS, 2019)
- Livestock per household (surveys) Annual Estimated Demand: 0.50 MCM

- Sand depth: 1.5 m
- River surface area: 0.84 km²
- Effective porosity: 15% to 40%

Storage Potential: 0.19 to 0.50 MCM

40% (Dry year)

Currently used water supply infrastructure

Schöeller and Piper Plots

- All the **sand river samples** are suitable for drinking.
- Sand river samples: NaHCO₃ (possibly silicate weathering).
- Some river bank samples reflect sand river characteristics.
- Others show mixing (locally recharged groundwater and infiltrated runoff).
- Deep groundwater: CaHCO₃ (dissolution of calcite or originally recharged in a CO₂ rich environment).
- Surface water mostly affected by hydrogeological processes.

Chemical Water Type

- River banks: dominance of Ca²⁺ and Mg²⁺ in the gneiss environment, Na⁺ in the quaternary.
- Higher EC of the banks' groundwater: enhanced evapotranspiration and lower recharge.
- Upstream samples mainly brackish, downstream samples show lower salinity (younger/recently recharged) → Different flow systems.

Stiff diagrams

Stable Water Isotope Analysis

- A first group close to the GMWL (mainly recharged by local precipitation).
- A second group showing a heavier isotopic composition (due to evaporation).
- Plot of δ¹⁸O versus the Cl⁻: sand river and surface water samples show enriched isotopic composition (compared to deep groundwater) → higher evaporation effect.
- Two groups of river bank samples.

 δ^2 *H* versus δ^{18} *O* (classified scatter points per water source)

Sand River's Characteristics and Behavior

- Wider and thicker in the downstream.
- Continuous surface flow in the gneiss-dominated area (before disappearing).
- Surface water has **baseflow characteristics** (enriched with dissolved ions, chemical composition as groundwater).
- **River banks groundwater** in the gneiss environment different than quaternary (dominance of Ca²⁺ and Mg²⁺).
- River banks groundwater result of mixing between locally recharged groundwater and infiltrated surface runoff (especially in the downstream).
- Some river bank samples showed the same water type as the sand river → interaction/hydraulic connection between those two systems.

Conceptual model for the upstream part (gneiss environment)

Conceptual model for the downstream part (quaternary environment)

Water Availability

- Sand river groundwater **suitable for drinking** (Hussey, 2007).
- Uncertainty of the storage capacity (suitable for abstractions).
- Storage potential: 10000-27000 m³/km (versus 62500 m³/km for the Shashane (Moulahoum, 2018) and 13000-17000 m³/km for the Middle Mara (Wekesa et al., 2020)).
- Storage accumulated during a wet year can cover the demands for one following dry year (locals adapt by well deepening and changing the source).
- Water stored within the riverbed sediments is subject to evaporation (the top 33 to 60% of the sediment can be affected).
- Storage also threatened by sand harvesting (reported in the literature, satellite imageries and during the fieldwork).
- More consistent use of the sand river's water (to cover part of the demand).
- Fraction of the recharge for **ecological demands**.

River section affected by sand harvesting.

General Recommendations

- Low storage potential --> Enhancing the storage (especially that sand harvesting is occurring).
- Building sand dams and subsurface dams (downstream part).
- Small surface reservoirs in the upstream (away from the sand deposits, low-permeability hardrock).
- **Losses** through evaporation and leakage through rock fractures.
- Artificial recharge of the sand river through managed releases from an upstream dam.
- Abandoned agricultural lands: capacity building activities (economic importance of agriculture).

Field pictures of a broken sand dam (left) and a functional sand dam (right)

References

- Guth A, Wood J (2013) Geological Map of the Southern Kenya Rift: Kajiado, Kenya. The Geological Society of America, Boulder, Colorado
- Hamer WD, Love D, Owen R, Booij MJ, Hoekstra AY (2008) Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C 33 (8), 633–639
- Hussey SW (2007) Water from Sand Rivers. Guidelines for Abstraction. Water. Engineering and Development Centre (WEDC) Loughborough University of Technology, UK, 194 pp
- Kiptala J, Mwangi M, Karimi P, Duker A, van der Zaag P, de Fraiture C (2020) Baseline Review and Data for Study Areas in Kenya.
 Nature Based Water Infrastructures for Global Goals NaBWIG Project
- KNBS (2019) 2019 Kenya Population and Housing Census: Volume I: Population by County and Sub County. Republic of Kenya
- Moulahoum AW (2018) Using Field Assessment and Numerical Modelling Tools to Optimize a Water Abstraction System in the Shashane Sand River Aquifer (Zimbabwe). MSc thesis. UNESCO-IHE-Delft
- MOWI (Ministry of Water and Irrigation) (2005) Practice Manual for Water Supply Services in Kenya. Republic of Kenya
- Wekesa SS, Stigter TY, Olang LO, Oloo F, Fouchy K, McClain ME (2020) Water Flow Behavior and Storage Potential of the Semi-Arid Ephemeral River System in the Mara Basin of Kenya. Frontiers in Environmental Science, 95

