

Impact of groundwater abstraction on WFD status: regulation, methodology and uncertainties

Alexander, S., Price, V., Dottridge, J., Rollins, B.

sarah.alexander@mottmac.com victoria.m.price@mottmac.com jane.dottridge@mottmac.com b.rollins@gwscience.co.uk

Groundwater, Key to the Sustainable Development Goals

 Groundwater Quantitative status is an expression of the degree to which a groundwater body is affected by abstractions

Case Study

Fylde Permo-Triassic Sandstone Aquifer

Study area Mott MacDonald

Bedrock geology

Superficial geology

Case Study: Model runs

- Historical: from 1969 to 2019
- Naturalised: All abstractions and discharges set to 0
- Recent Actual (RA): Abstractions set to average abstraction over the Recent Actual period (2015-2019)
- Fully Licensed (FL): Abstractions and discharges set to Fully Licensed rate
- Future Predicted (FP): Public Water Supply sources Recent Actual rates (2015-2019) multiplied by the growth factor
- Switch off: Public Water Supply sources set to 0. All other abstractions and discharges as in baseline

Boundary conditions (excluding abstractions)

18 May 2022

Mott MacDonald

WFD Tests – Groundwater Quantitative Status

Test 1: Water balance test

Test 2: Groundwater dependent surface water body test

 Is the abstraction rate less than the available groundwater resource? Is groundwater abstraction causing deterioration of ecological status in any of the surface water bodies supported by the groundwater body? Test 4: Saline intrusion test

 Is saline intrusion occurring as a result of abstraction?

Test 3 (Groundwater dependent terrestrial ecosystems) - none identified for Fylde

Test 1: Water balance

Scenario	Recent Actual	Fully Licensed	Future Predicted
Abstraction [MI/d]	35.6	72.5	34.4
Recharge [MI/d]	63.2	64.4	63.1
Groundwater flux [MI/d]	5.1	10.1	5.0
Net environmental flow allocation [Ml/d]	34.1	34.1	34.1
Groundwater resource [MI/d]	34.2	40.5	34.1
Groundwater balance [Ml/d]	<mark>-1.4</mark>	<mark>-32.0</mark>	<mark>-0.3</mark>
Abstraction as percentage of groundwater resource	104%	179%	101%
Result	Poor (low)	At risk	Probably at risk

Test 2: Groundwater dependent surface waterbodies

Surface waterbody	50% test	20% test	EFI test	Overall result
GB112071065500	Pass	Pass	Pass	Good (high)
AP1, Lower Ribble	Pass	Fail	Fail	Good (low)
GB112072065760	Pass	Fail	Fail	Good (low)
GB112072065800	Pass	Fail	Pass	Good (low)
AP7, River Brock	Pass	Fail	Fail	Good (low)
AP6, Woodplumpton Brook	Pass	Fail	Fail	Good (low)
AP8, River Calder	Pass	Fail	Pass	Good (low)
GB112072065810 (Brock)	Pass	Pass	Fail	Good (high)
GB112072065822 (Wyre ds Grizedale Brook confluence)	Pass	Fail	Fail	Good (low)
AP2, Wyre at Garstang	Pass	Fail	Fail	Good (low)
GB112072065790	Pass	Pass	Fail	Good (high)
AP1, Wyre at St Michaels	Pass	Pass	Fail	Good (high)
GB112072065860	Pass	Fail	Fail	Good (low)
GB112072065821 (Wyre –	Pass	Fail	Fail	Good (low)
AP10, Grizedale Brook	Pass	Fail	Pass	Good (low)
AP9, River Cocker	Fail	Fail	Pass	Good (low)

Accretion profiles

Test 4: Saline intrusion

	Baseline [Ml/d]	Switch off run [MI/d]	Difference [MI/d]
Constant head boundary			
representing the sea	-4.31	-4.36	0.05

Uncertainties

Environmental Flow Allocation

- The baseflow from a groundwater body needed to support the environmental needs of the overlying water bodies
- Lack of ecological monitoring makes it difficult to define the EFI with confidence
- The EFI reflects flows across the whole surface water catchment. Where the surface water body intersected the groundwater model boundary, it was not appropriate to directly compare the EFI with the modelled flows
- The Environmental Flow Allocation is also dependent on the Base Flow Index

Conclusions

- The EA has provided guidance on assessing the Quantitative Status element of groundwater body WFD status
- Challenges in quantifying the links between groundwater, surface water and the health of ecosystems given the many uncertainties

River Wyre, St Michael's on Wyre © Copyright David Dixon

Thank you

1.4: Saline or other intrusion test

Accretion profiles

Dry: June 2006

- Under the Water Framework Directive, groundwater bodies are assessed based on their chemical and quantitative status
- Groundwater Quantitative status is an expression of the degree to which a groundwater body is affected by abstractions

- The Environment Agency has defined a test for each of the four components that affect the Quantitative Status element of the Overall Water Body classification
- Results can be good or poor for each test
- If any of the tests has poor status, then the overall Quantitative status is poor

- Under the Water Framework Directive, groundwater bodies are assessed based on their chemical and quantitative status
- Groundwater Quantitative status is an expression of the degree to which a groundwater body is affected by abstractions

Test 4: Saline intrusion

- Very small difference in flow across constant head boundary
- No trend in chloride concentration indicative of saline intrusion
- Test 4 status is good

	Constant Head
Baseline (Ml/d)	-4.31
	-4.36
Switch off	
	0.05
Difference	