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Pathogens E. coli O157:H7

Cryptosporidium parvum

• Groundwater is the principal source of 

drinking water for as many as 2 billion 

people worldwide (50% in US and 

75% in Europe).

• 52% of drinking-water outbreaks are 

associated with groundwater in the US.

• 15% of groundwater systems in the US 

and Canada tested positive for enteric 

pathogens (bacteria, virus, and 

protozoan parasites).

• Waterborne illnesses have been 

estimated to kill 2-3 million people 

worldwide every year.



Objective
• Develop mathematical models to examine the role of high 

permeability zones on pathogen transport and fate.

• Examples of high permeability zones:

 Preferential flow paths

 Sand and gravel layers and lenses

 Fractured rock

 Karst systems  

Cey et al. (2009)
USGS



Deterministic Pathogen Transport

• Advective-dispersion equation with retention, release, and decay

• Filtration theory
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• We use an analytic solution from Toride et al. (1995)



• Mass transfer occurs 
via sedimentation (A), 
and interception (B), 
and diffusion (C).

• Mass transfer is 
quantified by solution 
of the convective 
diffusion equation. 

Filtration Theory



Filtration Theory Prediction

• Filtration theory predicts 
that ksw increases with 
velocity.

• However, there is a 
decrease in residence with 
increasing qw that produces 
less retention.

• Retention profile is 
exponential with transport 
distance.  



Setback Distance and Velocity
• Probability of infection 

depends on the amount of 
water consumed, the 
concentration of 
pathogens, and dose-
response model.

• Transport (setback) 
distance is needed to 
remove pathogens (> 6 
logs) from source water.

• Setback distance increases 
with velocity.

• High velocity regions will 
control the risk of 
infection.



Deterministic Models
• Deterministically model subsurface 

heterogeneity in flow and transport 

properties.

• Does not account for uncertainty.

• Alternative deterministic models

 Dual permeability models

 Analytic solution from Leij and 

Bradford (2013)
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Maxwell et al. (2003)

Wang et al. (2014)



Stochastic Stream Tube Model (SSTM)
• Field-scale flow and transport are described using a series of independent 

stream tubes.

• Local-scale transport is described deterministically using single or dual 

permeability models.

• Field-scale parameters are described with PDFs. 

• More complex geometries (variable width and tortuous) may be considered.

• Mean and variance of field-scale concentrations can be calculated.

• Dual permeability stream tube model allows for mixing!
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SSTM – Single Permeability Per Tube

• Ex. – Conservative tracer

• Earlier breakthrough and 
concentration variance 
with increasing velocity 
variance.

• Tailing is due to physical 
non-equilibrium. 



• Example of pathogen 
transport

• Pathogens are quickly 
removed from low velocity 
regions.

• Pathogen transport 
continues for greater 
distances in high velocity 
regions.

• This produces hyper-
exponential retention 
profiles, especially for 
greater retention rates and 
large velocity distributions.

SSTM – Single Permeability Per Tube



• Example of pathogen 
transport

• Greater exchange produces 
less transport and lower 
variance in concentration.  

• SSTM with single 
permeability per tube 
provides a worst case 
pathogen transport 
scenario, but is may be too 
conservative.  

SSTM – Dual Permeability Per Tube



Conclusions
• The setback distance increases with velocity.

• High velocity regions will control the risk of 

infection.

• Stream tube models have several advantages over 

deterministic approaches (PDFs instead of explicit 

description of heterogeneity; mean and variance).

• Stream tube models may also account for mixing 

(dual permeability), hyper-exponential RPs, early 

breakthrough, and concentration tailing.

• SSTM with single permeability per tube provides a 

worst case transport scenario.


