A pilot study to use the ³⁶CI bomb peak as a tracer for groundwater travel times in the Western Dead Sea catchment

Cornelia Wilske, Axel Suckow, Tino Roediger, Stefan Geyer, Stephan M. Weise, Silke Merchel, Georg Rugel, Stefan Pavetich, Broder J. Merkel, Christian Siebert

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

Western Dead Sea aquifer system

RECHARGE AREA

DISCHARGE AREA

- No surface fresh water reservoirs
- Precipitation only
 in the winter
 season : 800 mm
 (Mountains) to
 <100 mm (Lower
 Jordan Valley)

Motivation

Estimation of groundwater resources in a stressed aquifer systems

Research question

1. How long does the groundwater stay in the aquifer?

2. Is it possible to estimate mean residence times in a complex geological setting?

3. How can we use ³⁶Cl as tool for answering our questions?

Groundwater "Dating"

3.RESULTS

4. CONCLUSION/ OUTLOOK

⁴He: 500- >100 000a (age estimates)

0.1

Atmospheric input

PAGE 5

Suckow (2014): The age of groundwater – Definitions, models and why we do not need this term. Applied Geochemistry 50, pp. 222-230.

Application of a Lumped parameter model (Suckow 2012)

2.METHODICAL APPROACH

3.RESULTS

4. CONCLUSION/ OUTLOOK

Sampling locations & parameters

Hydro-/Geological groups

3.RESULTS 4. CONCLUSION/ OUTLOOK

Groundwater analyses: ³⁶CI/CI & Chloride concentration

Upper aquifer - Samia 2

Upper aquifer - Samia 2 ³⁶CI/CI vs. Tritium **Dispersion model** 5E-13 Tritium input * 0.6 • **Dispersion model curve** ³⁶CI/CI input * 3 Mean residence time MRT [a] • 4E-13 18 Mix 3E-13 Model B 36CI/CI Model A 16 Quaternary aquifer 200 Upper JGA - Northern spring 2E-13 Samia 2 Ω **.**0.1 Upper JGA - Wells 14 0.5 0.6 0.7 08 00' Upper & Lower JGA - Wells Lower JGA - Wells 20057 1E-13 Ein Feshka Mixing of 40% 210 a MRT 60% 6 a MRT 0 2 6 8 10 0 4 Tritium [TU]

2.METHODICAL APPROACH

3.RESULTS

4. CONCLUSION/ OUTLOOK

Upper aquifer - Samia 2

SF₆vs. Tritium

Upper aquifer - Samia 2

Lower aquifer - Jerusalem 1

Lower aquifer - Jerusalem 1

- Bomb-produced ³⁶Cl successfully used to calibrate lumped parameter model
- Complex geological setting: only multi-tracer approach gives reliable results

Recharge area – Lower Aquifer (Cretaceous)Jerusalem 1Mixing of 70 % 145 a MRT
30% 20 a MRT

Travel times confirmed by 4 tracers

Recharge area - Upper Aquifer (Cretaceous)Samia 2Mixing of ~50% 210 a MRT
~ 50% 6 a MRT

- Improvement of groundwater flow model and further estimation of groundwater quantity calculations
- Estimation of groundwater vulnerability in regard to flow path extension in the karst environment
- Need of further classifications of groundwater components >50 a, including determination of spring water

Thank you for your attention!

SPONSORED BY THE

HELMHOLTZ | ZENTRUM FÜR | UMWELTFORSCHUNG | UFZ

SEITE 17