Transboundary Groundwater in Western Asia: A Depleting Resource that Needs Immediate Attention

Yusuf Al-Mooji Senior Groundwater Expert

Outline

- Background
- Overview of the shared aquifer systems
- Technical constraints for the systems management
- Legal constraints for the systems management
- Recent initiatives to alleviate constraints
- outlook

Background

- ACSAD study 1990
- UNESCWA-BGR study 1999
- UNESCWA-BGR 2013

Source: WHYMAP, 2008

Shared VS Non-shared non-renewable aquifers in the Arabian Peninsula

(Modified from Al Sharhan et al., 1996)

Shared Aquifer Systems Mesozoic and Paleozoic Era

Shared Aquifer Systems Cenozoic Era

Transboundary Aquifers of the World, 2015

(Source: UNESCO-IHP Groundwater Portal)

Aquifer systems in the arid to semi-arid areas in the region (Arabian Peninsula Systems)

- Arabian Shelf provided the depositional basin (up to 7,500 m thick) for extensive sedimentary strata.
- Development of large regional aquifer systems subjected to minor folding and faulting along extensive anticlines and arches.
- Lithological character maintained over large areas.

congress

Aquifer systems in the more humid areas (Mashrek and Mesopotamia Systems)

- A series of uplifts bounded by strike-slip faults surrounded by highly folded and faulted mountainous regions.
- High precipitation falling on extremely well-exposed and highly karstified carbonate rocks in the mountains.
- Characterized by numerous springs and river systems that sustain the supply of fresh water from small catchments.

Technical and socio-economic constraints (Arabian Peninsula Systems)

Shared Aquifer Systems	Geologic Era	Riparian countries	Area (km2)	Storage (bcm)	Abstraction (mcm/a)	Salinity, TDS (mg/L)
Saq Ram West	Paleozoic	<mark>Saudi Arabia-</mark> Jordan	308,000	43-740 , 10	>1,000 , 90	<1,000
Wajid	Paleozoic	<mark>Saudi Arabia-</mark> Yemen	455,000	<mark>30-225</mark> , 4- 6	2260 , 100	700-1,000
Wasia Biyadh Aruma (S): Tawila- Mahra / Cretaceous Sands	Mesozoic	<mark>Saudi Arabia-</mark> Yemen	157,000	500	Very limited	<1,000
Wasia Biyadh Aruma (N): Sakaka- Rutba	Mesozoic	<mark>Saudi Arabia-</mark> Iraq	112,000	?	<40	400-3,000
U er R' Dammam (S): Rub' El Khali	Cenozoic	<mark>Saudi Arabia-</mark> Oman-UAE- Yemen	680,000	180-1,100 (O)	45 (O), ~8 (UAE)	<2,000 -200,000
U er R' Dammam (Center): Gulf	Cenozoic	<mark>Saudi Arabia-</mark> Qatar-Bahrain	281,000	235 , <3	~600 , 90	<5,000-100,000
U er R' Dammam (N): Widyan- Salman	Cenozoic	<mark>Saudi Arabia-</mark> Iraq-Kuwait	246,000	?	135	<1,000- <mark>150,000</mark>
Tawil-Quaternary: Wadi Sirhan Basin	Cenozoic	<mark>Saudi Arabia-</mark> Jordan	44,000	58-22	2,264-3,500	3,000-7,000
Total			2,283,000 (88.8%)			
					ain ain 25-29	43 ^{ru}

cong

Technical and socio-economic constraints (Mashrek and Mesopotamia Systems)

Shared Aquifer Systems	Geologic Era	Riparian countries	Area (km2)	Storage (bcm)	Abstraction (mcm/a)	Salinity, TDS (mg/L)
Anti-Lebanon	Cenozoic	Syria, Lebanon	1,055	4	430	200-600
Western Aquifer Basin	Cenozoic	Egypt, <mark>Israel,</mark> Palestine	6,035- 6,250	?	~390	250-2,000
Coastal Aquifer Basin	Cenozoic	Egypt, <mark>Israel</mark> , Palestine	18,370	1.4-2	620-740 (400-480)	<1,000-9,000
Basalt (W): Yarmouk Basin	Cenozoic	Syria,, Jordan	7,000	?	~200	<250-400
Basalt (SE): Azraq Basin	Cenozoic	Syria,, Jordan	8,500	?	~10	<250-6000
Taurus-Zagros	Cenozoic	<mark>Iran</mark> , Iraq, Turkey	14,286	?	~420-3700	<1,000
Jezira Tertiary Limestone	Cenozoic	Syria, <mark>Turkey</mark>	14,000	7,400	1590, <mark>1380</mark>	220-4,700
Neogene (NW) - Upper and Lower Fars: Jezira Basin	Cenozoic	Syria, Iraq	65,000	?	44-63	<1,000->20,000
Neogene (SE) Dibdibba – Kuwait Group	Cenozoic	Saudi Arabia, Iraq, Kuwait	153,000	1.26 (Iraq)	~460	2,500-15,000
Total			287,461 (11.2%)			

UM CONFERENCE CENTER CONGRESS

Technical and socio-economic constraints,

cont. (Arabian Peninsula Systems)

(a: Water Watch, 2006; b: Hiaste Kirkpatrick International and Scot Wilson Kirkpatrick, 1995; c: based on data from Abunayyan Trading Corporation and BRGM, 2008; d: based on data from Barthelemy et al. 2010)

congress

Groundwater level decline in the Ram aquifer system, Jordan

Technical and socio-economic constraints, cont. (Arabian Peninsula Systems)

Technical and socio-economic constraints, cont. (Arabian Peninsula Systems)

(Based on ESCWA-BGR, 1999)

Technical and socio-economic constraints, cont. (Arabian Peninsula Systems)

(Based on Harhash and Yousif, 1985)

Legal constraints

- Ineffective or absence of national water legislations
- Lack of consensus over water rights
- Dilemma of water security VS food security
- Inadequate knowledge of groundwater systems
- Serious shortage of qualified legal experts to enforce water laws

Main groundwater issues in the Western Asia region

- Prevalence of extensive non-renewable aquifers
- Storage unknown
- Heavy abstraction
- Discrepancy on abstraction figures
- Increasing salinization
- Not a single basin-wide agreement

Recent initiatives

- Bilateral agreement on the Saq-Ram (West) aquifer system
- Regional initiative for cooperation among Arab States (Framework Convention for Arab Shared water Resources)

Saq-Disi Agreement

Aontpellier

congress

Saq-Disi Agreement (cont)

- Creation of a "protected Area" free from groundwater-related activities for domestic water supply in April 2015
- Essentially an official version of a non-binding MoU signed at the technical level in 2007

Saq-Disi Agreement (cont)

- No limitations on abstraction beyond the protected area
- No pollution control measures beyond the protected area
- No mention of basic principles of international law such as equitable and reasonable utilization, and no significant harm
- Joint technical committee with no decision-making authority

Framework Convention for Arab

Shared water Resources

- Commitment for cooperation on sustainable use and effective management of shared water resources
- Exchange of information and data
- Prior notification of measures to be implemented
- Equitable and reasonable utilization but no mention of no significant harm
- Measures for protection of the environment
- Shared water resources with non-Arab countries
- Water rights in the Occupied Palestinian Territories

Framework Convention for Arab

Shared water Resources (cont)

- General objective: to protect shared water resources in the Arab Region
- Big debate on:
- Shared groundwater only or groundwater and surface water
- Terminology of shared VS transboundary

conclusion

- Extensive shared aquifer systems that are essentially non-renewable and rapidly being depleted and/or being subjected to salinization
- Lack of adequate data coupled with the absence of official agreements on shared groundwater resources hampers joint water resources management
- It is already too late to save some shared aquifers that have become too polluted or saline to use

Outlook

- completion, validation and updating of baseline information
- Establish a regional data base
- Build trust among riparian countries
- Enhance and activate cooperation between international organizations, donors and the League of Arab States
- Initiate ISARM project in the region

Thank you

