

Hydraulic impact of the access ramps and shafts of the French Cigeo deep radioactive waste disposal on the above aquifers of the Meuse/Haute-Marne site

H. Benabderrahmane¹, J. Kerrou², L. Tacher³, P. Perrochet²

 ¹ Andra, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
 ² Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland
 ³ Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Mécanique des Sols (EPFL - LMS), CH - 1015 Lausanne

27/09/2016

© Andra

DRD/EAP/16-0098

This document is the sole property of Andra It cannot be reproduced or communicated without its prior permission.

43rd IAH CONGRESS - MONTPELLIER September 25-29, 2016

Cigèo Project: Hydro-geological multilayered aquifer system and planned repository concept (engineered structures)

Paris Basin Geological Background

ANDRA

- Host layer : Callovo-Oxfordian clay Age: 165 10⁶ years Thickness: 130 m Depth: 500 m
- Overlying Multilayered aquifer system:
 - Oxfordian Limestones (280 m)
 - Kimmeridgian marles (100 m)
 - o Barrois limestone (100 m)

- Hydrogeological structure of the Oxfordian aquifer system
 - Oxfordian limestone aquifer is structured into two aquifer units NE of the site and just one unit in the rest of the domain
 - 7 Macropore zones gathered into 4 aquifers units (Hp1-4, Hp5, Hp6 and Hp7)
 - Hydraulic conductivity ranges from 10⁻⁹ m/s to 10⁻⁷ m/s

Middle Oxfordian

Late Oxfordian

Numerical solution of variably saturated flow (Modified Richard's equation) : Finite Element Mesh

 Mathematical formulation (modified Richard's equation for variably saturated flow)

 $\frac{\partial \theta}{\partial t} = \nabla . \, k_r K \nabla (\psi + z) - \Delta Q$

Finite Element Mesh (EPM approach)

3,2 10⁶ nodes
10,3 10⁶ elements (2 m to 200 m)
Vertical refinement, numerical layers : 53

 GroundWater FEM computer code (Chyn University of Neuchâtel)

ANDRA

Parametrization and boundary conditions

URL Monitoring data for transient flow modelling: (i) pressure in boreholes and (ii) drained water into the shafts

- Experimental Design and identification of the sensitive parameters
 - 14 parameters (Hydraulic conductivity and Storage associated to 7 Oxfordian layers and macropores zones (Hp1-4, Hp5, Hp6 and Hp7)
 - Factor intervals
 - Hydraulic conductivity: [0.02, 50.]
 - Storage coefficient: [0.02, 50.]
 - Latin Hypercube parameters sampling
 - Gaussian parameters Distributions
 - 300 numerical simulations/Experiments
 - Response/Target : Objective Function

$$OF_{gw} = \sum_{t=0}^{tm} \left| \frac{H_{obs}^{k}(t) - H_{sim}^{k}(t)}{H_{obs}^{k}(t)} \right| + \sum_{t=0}^{tm} \left| \frac{Q_{obs}^{1}(t) - Q_{sim}^{1}(t)}{Q_{obs}^{1}(t)} \right|$$

- Response surface Model
 - K1, K2, S5, S7 the less sensitive parameters
 - Resulting regression model (polynomial Function) includes 37 terms (linear and second order effects)
 - R²= 0,975
 - Optimized Polynomial function: 37 terms including constant

Latin Hypercube Sampling 300 sampling intervals of equal probability

Calibration using Polynomial function (RSM) (1)

Matching the near field monitoring results of the Oxfordian aquifer (transient flow calibration) Calibration parameters: Hydraulic conductivity and Specific storage (Hydraulic diffusivity : 2 10⁻⁴ – 5 10⁻² m²/s)

Borehole EST201

Discharge into the main Shaft (PPA)

Head/discharge time series

- Initial flow field:
 - o January 2019

Construction time schedule:

- o January to September 2019: ramps and two first shafts
- o October 2019 to March 2020: two last shafts

URL perturbation extension prior to the repository construction

Discharge prediction into the shafts and into the ramp during the construction phase

Date

Maxımum dıscharge m³/day

Shaft I	Shaft2	Shaft3	Shaft4	Ramp
20	18	16	21	155
230				

Evolution of the hydraulic perturbation during an operational phase of 100 years

- Results
 - Predicted hydraulic perturbation has lateral extension of about 40 Km²
 - Maximum discharge is of 21 m³/day in Shaft 4
 - Discharge of drained water into the ramp has maximum predicted value of 155 m³/day
- Perspective
 - Reduction of the uncertainty of the layers geometry crossed by the ramps and the shafts by integrating the 3D seismic survey results of the repository area (ZIRA)
 - Constraining the transient flow calibration by the use of Kalmann filter technic
 - Predict and assess the hydraulic impact of the engineered structures on the Barrois limestones aquifer system
 - Map the unsaturated zone around Shafts and Ramp

THANKS TO THE MODELLING TEAM

THANKS FOR YOUR ATTENTION