Numerical simulation of managed aquifer recharge into a karst groundwater system at the Wala reservoir, Jordan

Julian Xanke¹, Hervé Jourde², Tanja Liesch¹ and Nico Goldscheider¹

¹Karlsruhe Institute of Technology
²Montpellier University, Laboratoire Hydrosciences
Demographic growth and semi-arid climate challenge Jordan’s water management

population and …

< 1 million people (1960)
6.5 million people (2013)
~ 9.5 million people (2015)

… economic growth

Water use
2014 (%)
Domestic 51
Agriculture 45
Industry 4

high variability …

… in water availability
Jordan’s water facts

2014 (MCM)

Water demand ~1,400

Water supply 973

Surface water 259
Treated wastewater 125
Groundwater (~70% from karst aquifers) 589

Water deficit 427

Jordan’s water strategy promotes the application of managed aquifer recharge

increase groundwater availability in summer
Wala reservoir stores flood water and recharges it to the underlying karst aquifer

<table>
<thead>
<tr>
<th></th>
<th>Total [MCM]</th>
<th>Annual average [MCM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2002-2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflow</td>
<td>136</td>
<td>129</td>
</tr>
<tr>
<td>Overflow</td>
<td>52</td>
<td>4.7</td>
</tr>
<tr>
<td>Recharge</td>
<td>74</td>
<td>6.7</td>
</tr>
<tr>
<td>Evaporation</td>
<td>7.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Abstraction</td>
<td>129</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Proportion of recharge on abstraction = 56%

Water level at the downstream Hidan wellfield is increased

- Drinking water supply to the capital Amman, Madaba city and adjacent communities

The model is used to better understand the characteristic aquifer hydraulics

Obtained by Calibration

- Reproduce water level fluctuations in the aquifer
- Identify the driving factors of water level fluctuations at the wellfield

Obtained by scenarios

- Predicted infiltration decrease caused by reservoir sedimentation
- Provide a basis for optimized water resources management

Two climate scenarios for a dry and a wet period, each 10 years

Two well management scenarios for each climate scenario
The model domain is projected onto a 2-dimensional profile along the wadi.

(Source: Xanke et al. 2016)
Recharge model: subdivision into hydraulic zones simplifies the calibration procedure

- Approach: finite element method (FEFLOW) – saturated flow conditions - confined setting (cross sectional model)

Superelevated presentation – K values are in m/s

(Source: Xanke et al. 2016)
Recharge model: in-transfer rate Φ regulates infiltration from Wala reservoir

- Infiltration increases exponential with water level
- In-transfer rate ($\Phi = K/d$) was manually adapted

(Source: Xanke et al. 2016)
Abstraction model: strong water level fluctuations are controlled by changes in the mean pumping depth

- A fault at Hidan wellfield has a damming effect on groundwater flow
- Inherent problems in representing pumping rates in a 2D vertical model

 statements about the magnitude of fluctuations have to be considered carefully

Superelevated presentation – K values are in m/s

(Source: Xanke et al. 2016)
Lowering of annual average groundwater level of about 2.7 meters at recharge wells …

- satisfying accordance of measured and simulated groundwater level fluctuations at recharge wells

(Source: Xanke et al. 2016)
... and probably a greater depletion at the wellfield

- satisfying accordance of measured and simulated groundwater level fluctuations at Hidan wellfield

(Source: Xanke et al. 2016)
Conclusions

Numerical model

- **Reliable simulation results** were achieved with 2D vertical profile models.

- Subdivision into **hydraulic zones** allows the simulation of the **karst characteristic flow pattern**.

Management

- The Wala reservoir poses a **successful example** of **managed recharge into a karst aquifer**.

- Technical measures are required to **reduce the sedimentation rates** and to remove sediments from the reservoir.

- The **wellfield** requires an **improved management** in terms of monitoring and abstraction.
Acknowledgements

- Co-authors: Hervé Jourde, Tanja Liesch and Nico Goldscheider
- BMBF – Federal Ministry of Education and Research, Germany
- The SMART II Project (FKZ 02WM1079-1086 and FKZ02WM1211-1212)
- The SMART Move Project (FKZ 02WM1335C)
- Ministry of Water and Irrigation (MWI), Amman - Jordan
- Water Authority Jordan (WAJ)
- Jordan Valley Authority (JVA)

Publications

Contact: julian.xanke@kit.edu