

CRYSTALLINE ROCK AQUIFERS THE LLANO UPLIFT CENTRAL TEXAS, USA

John M. Sharp, Jr. & Neeraja Setlur

Department of Geological Sciences Jackson School of Geosciences The University of Texas Austin, Texas, USA

Brian B. Hunt

Barton Springs/Edwards Aquifer Conservation District Austin, Texas, USA

Terence T. Garner

Occidental Petroleum Corp. Houston, Texas, USA

Hard-rock systems cover much of the Earth's land surface & in many of these areas, like study area - the Llano Uplift,

1. They are only reliable (and locally available) water resource and

2. They underlie, abut, and interconnect other shallow aquifers.

Purpose

To characterize crystalline rock aquifers through a study of hydraulic properties of the aquifer on a macro scale through well yields and vertical zonation and the micro scale through fracture skin properties.

(U.S. Geological Survey, I-2781)

Modified from Hunt (2008)

WELL YIELDS FROM DRILLERS' LOGS

(Mostly from TWDB files)

Rock type (number of wells)	Median well yield [L/s]	Median well depth [m]	Median water table depth [m]	Median regolith thickness [m]	Reference
Granite (197)	0.50	22.9	-	-	Landers & Turk, 1973
Grus (103)	1.01	12.2	-	-	66
Fractured granite (40)	0.38	25.9	- /	-	66
Schist (73)	0.25	15.8	-	-	66
Gneiss (48)	0.25	24.1	-	-	66
Granite (559)	0.95	35.1	-	11.9	Hunt, 2008
Schist/gneiss (537)	0.50	42.7	-	5.5	66
Granite (566)	0.50	48.8	11.0	7.0	TDWB, wells since 2008
Schist/gneiss (278)	0.44	42.7	11.6	6.7	66

Mason County Discharge [gpm] versus well depth [ft]

 $100 \text{ gpm} = 6.3 \text{ L/sec} = 6.4 \text{x} 10^{-5} \text{ m}^{3}/\text{sec}$

Llano & Mason Counties Well yields [gpm] versus regolith thickness [ft]

THE PROPERTIES OF RESIDUAL SOILS REFLECT THEIR LITHOLOGIC ORIGINS

Soil	Overlies	Permeability	Depth		
Castell	gneiss	slow /moderate	moderate		
Click	granite grus	rapid	deep		
Katemcy	schist	slow / moderately slow	moderate		
Keese	gneiss or granite	moderate / moderately rapid	shallow		
Ligon	schist	slow / moderate	moderate		
Lou	granite grus	moderate / rapid	moderate		
Voca	granite grus	slow	very deep		

Soil permeability and hence recharge are strongly influenced by lithology.

Data from the USDA NRCS

VERTICAL ZONATION

Upper / local (weathered) zone

If present, the most productive zone

Middle zone (regional)

- 10s -100s m permeability decreases with depth
- 100 m "rule"

Lower (retarded flow) zone

- Flow significant only in isolated fracture zones
- In rare occasions surprisingly high

Krasny & Sharp, 2007; Krasny et al. (2014)

General vertical zonation

Common	Krasny & Sharp (2007)	Deere & Patton (1961)				Acworth (1987)		Lachasagne et al. (2011)		Wyns et al. (2004)
Zone	Hydrodynamical zone	Zone		RQD	k	Zone	k	Zone	k	Zone
Regolith Upper / local (intensive & shallow)	Residual soil	la -O & A horizons	-	medium to high	Soil - A horizon	high	Soil not classified		fied	
		lb - B horizon	-	LOW	Soil - B horizon	low to medium			nea	
		Ic - C horizon (saprolite)	0	medium	Zone a - Soil zone C	low	Clayey saprolite	low	Clayey saprolite	
					Zone b	low	Sandy saprolite	low to medium	Sandy saprolite	
					Zone c	low to medium				
	Weathered rock	lla - Transition (residual soil to partly weathered rock)	variable (0 to 50%)	HIGH	Zone d - fractured and fissured rock	high to medium	Fissured layer	medium to HIGH	Upper fissured layer	
		IIb - Partly weathered rock)	generally 50 to 75 %	medium to HIGH					Lower fissured layer	
	Middle / regional (intermediate)			> 75%	low to medium		low		low	
веагоск	Lower / retarded (slow, deep, negligible to stagnant) Global (often	Unweathered rock	111			Fresh rock		Fresh basement		Fresh basement
	insignificant)									

Metamorphic rocks Plutonic rocks

Deere & Patton (1971)

Rock Quality Designation (%) vs. Depth (m)

Significant permeability can be inferred in some cores at depths

BLACK'S LAW

When dealing with fractured systems, we find that contaminants appear at places we don't expect and they appear faster than we had predicted.

However, crystalline rocks can, to some extent, retard and attenuate mass transport.

We find that along fracture walls and in fracture fills :

porosity is not insignificant; & pores are small → large specific surface.

Sample	Porosity [%]	Median / mean pore diameter [µm]		
Core #10 granite fracture fill	9.9	0.2884 / 0.1563 8.569 / - 7.392 / -		
Fredericksburg Town Mountain Granite skin	6.1			
Core# 6 gneiss fracture fill	2.0			
Core #34 gneiss fracture fill	15.5	0.204 / 0.0861		
Australian Calca (green) Granite skin	5.6	.0339 / 0.1014		

Hg-injection porosimetry courtesy of Glen Baum (Univ. Texas)

Skin development (Elberton granite, Georgia, USA)

Thickness

Presence of elements in skin coatings

Core: 10 Sample: 1P Depth 19' Mag:5x, 10x

Core: 10 Sample: 1Q Depth 20' Mag: 20x

En

Core: 10 Sample: 14C Depth 181.5' Mag: 20x

Core: 10 Sample: 14L Depth 181.7' Mag: 10x

Core: 10 Sample: 14L Depth 181.7' Mag: 5x

Fracture fills and skins

- These are ubiquitous.
- Near the surface they are thicker and more ferruginous. Open Fractures are more abundant.
- With depth they are thinner and appear more reduced. Filled fractures are more abundant
- Trace elements (e.g., Ce, Ti, and La are more prominent.
- Porosity is not insignificant.
- Specific surface is significant.
- They can to some extent retard and attenuate mass (including contaminant) transport.

CHALLENGES

- How to <u>characterize</u> and parameterize these <u>very</u> <u>inhomogeneous</u> systems.
- <u>Upscaling</u> from lab-to-well field or from well field-to-regional scales.
- <u>Finding appropriate data</u> to validate or test numerical models of fracture system hydrogeology and transport of solutes, colloids, and heat.
- Identifying permeable fracture systems at depths.

CONCLUSIONS

- Permeabilities generally decrease with depth.
- Recently more deeper wells are being drilled.
- Thick weathered zones (grus) can be highly productive.
- The 100 m rule of thumb generally holds, but fracture zones at depths can be productive.
- A priori prediction of these deeper fractures is difficult.
- Weathering along fractures increases porosity and specific surface (& will affect solute transport).
- We observe strong fissuring parallel to the ground surface in the weathered zone.

Acknowledgements

- The Carlton Professorship of The University of Texas
- Glen Baum (UT Petroleum Engineering)
- Dr. Donggao Zhao (UT Geological Sciences)
- The staff at the UT core repository
- Frank Roberts