Groundwater Resources in the Aquifer Systems of the Iullemeden and Taoudeni /Tanezrouft Basins -- Sahelo-Saharian Region --

Dr. Jean-Marie BARRAT

N°abstract **1405**

Contents

Context & Objectives

- Geography, Geology, Climate
- Groundwater Resources Assessment

Methodology & Innovative Approach

- Overview
- Development of Innovative Technics for Data Processing
 → Potentiometric Maps
 → Recharge
- Modelling

Findings on Water Resources

- Overall High Potential on Groundwater Resources
- Slightly Sensitive to Climatic Changes and to Pollutions
- Under-exploited

Specific Findings

- Very High Potential Areas on GWR
- Exfiltration Areas
- **Gao** Strait Enigma (Taoudeni $\leftarrow \rightarrow$ Iullemeden)

Studied Area

Hydrogeological Maps Water Wells Distribution

Objective

Overall goal

- Assessment of Groundwater Resources of the *Iullemeden* and *Taoudeni/Tanezrouft* aquifers systems under arid and semi-arid climatic conditions
- Better understanding of
 - ✓ Relationship between the aquifers systems and the Niger Riv.
 - ✓ Connection between the two aquifers

Population in the studied area

> 25 millions inhabitants (over 7 countries)

Project duration and team

13 months (2012-2013)

Team

- 10 international experts
- 35 regional and national experts

Methodology

Global Approach

Actions leading to the elaboration of a groundwater flow numerical model, a major tool to:

- Understand better the aquifers behaviour
- Assess groundwater vulnerability
- Manage water resources in the decades to come

Data processing \rightarrow Input to the GWF model

- ✓ Potentiometric Maps (innovative approach)
- ✓ Digital Elevation Model
- ✓ Landuse Maps
- ✓ Aquifer Recharge Model (innovative approach)

Ground Water Flow Model

- Concept, Development and Calibration

Methodology Scheme

Data Processing : Groundwater Levels ⁸ Developed Algorithm for Setting up Potentiometric Maps (1/2)

Data Processing : Groundwater Levels Developed Algorithm for Setting up Potentiometric Maps (2/2)

Data Processing : Satellite Images Digital Elevation Model - DEM-90m (corrected)

Data Processing : Satellite Images Landuse Map

Data Processing: Recharge Assessment Developed Model (Multicriteria Approach) → See Poster Session 6.03 Spot 3, Wednesday 4pm

Data Processing : Recharge Assessment

Ground Water Flow Model (Modflow™)

Construction & Calibration (under Steady & Unsteady State conditions)

Modelling the Two Aquifers Systems (Taoudeni & Iullemeden linked by the Gao Strait)

- Fixed Fluxes : Rivers (flux exchange Aquifers $\leftarrow \rightarrow$ Rivers)
- Exfiltration Zones : (Aquifer outlet = Evaporation)

Exploitation : Simulation of 2 scenarios 2010→+2050

- > Scenario 1: climate 2010 → 2050 = climate 1960 → 2000
- > Scenario 2 (pessimistic) : climate 2030 \rightarrow 2050 = climate (1980 \rightarrow 1990)x2
- Withdrawals increase vs Population growth (doubling every 20 years)

GWF Model Outputs Flux Balance (m³/s)

GWF Model Scenarios Climate Changes & Population Growth

- Simulated Period : 2010-2050 with Climate = Climate 1960-2000
- Demography >>> Water Withdrawals 7 7 7

Model Simulation : 2012-2050 Water Level Variation (on Populated Area)

Parameters: Withdrawals (Qw) – Climate (Recharge)

Findings: Taoudeni & Iullemeden Aquifers A Huge Groundwater Reservoir (2.5м km²)

Findings: Low Vulnerability

Findings : Gao Enigma Gao Strait : Taoudeni $\leftarrow \rightarrow$ Iullemeden Aquifers Connection

Taoudeni-Tanezrouft and **Iullemeden** Aquifers Systems **linked through** <u>Gao Strait</u> However

Almost <u>No Fluxes</u> through the Gao Straight

(radial groundwater flow only perpendicular to the Gao Strait axis)

It's an Exfiltration zone

Overall Findings Gorgeous Groundwater Resources

Negligible Water Level Depletion towards 2050 despite Climate Change and Water Demand growth

Moreover, One single year of Rainfall in excess can replenish Water Level Depletion induced by several years of drought (wherever Recharge is significant)

An Under-Exploited Sustainable Resource which can play a Buffer Role against the irregular Surface Water Resources (during severe droughts)

