Contamination fingerprinting techniques for private water supply wells: Identifying the impact from domestic water treatment systems

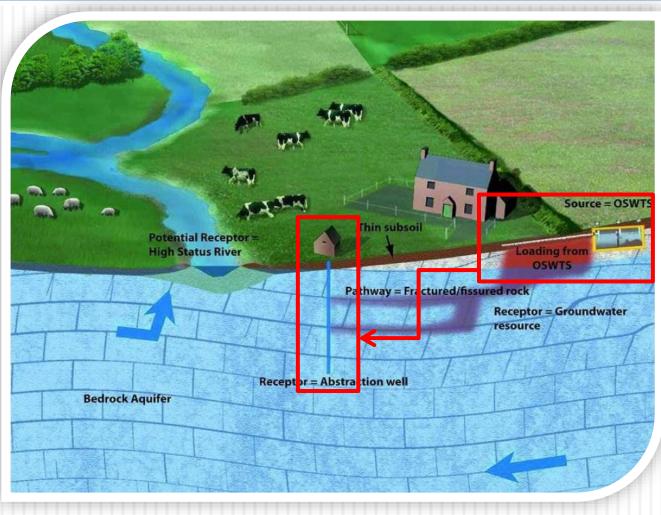
Chris Fennell Bruce Misstear Laurence Gill Vincent O'Flaherty Kate Kilroy Donata Dubber David O'Connell Laura Brophy Martin Danaher

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

43rd IAH CONGRESS 25-29th September, 2016 le Corum, Montpellier, France

Private water wells & septic tanks

Groundwater ad total water abst
 Approximately water sources, i


25% of Ireland's

rely on private

Problem: Private wells in Ireland are largely unregulated, and as a result are often poorly located and constructed leaving them vulnerable to contamination

Approx. 500,000 houses also rely on domestic wastewater treatment systems, of which more than 87% are septic tanks

Wells & contamination pressures

EPA, 2013

Identifying contamination in wells

FAECAL INDICATOR BACTERIA ARE NOT SOURCE

SPECIFIC

Research Aim: Evaluate contamination tracers and their ability to attribute private well contamination to a specific source

Study sites

County Cavan
 (Low Vulnerability, Sandstones,

Limestone, Conglomerates)

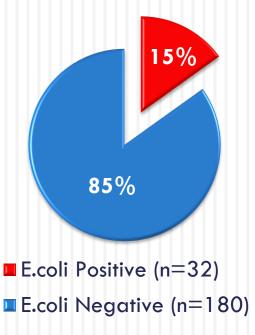
County Kilkenny (Extreme Vulnerability, Dinantian Limestone)

County Wexford (Extreme Vulnerability, Ordovician Metasediments)

County Wexford

(Low Vulnerability, Felsic volcanics)

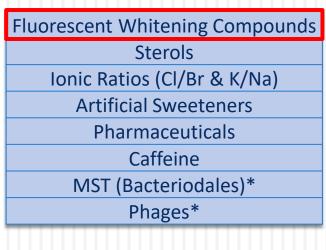
Sampling & Analysis



212 wells surveyed, sampled and analysed for microbial and chemical parameters

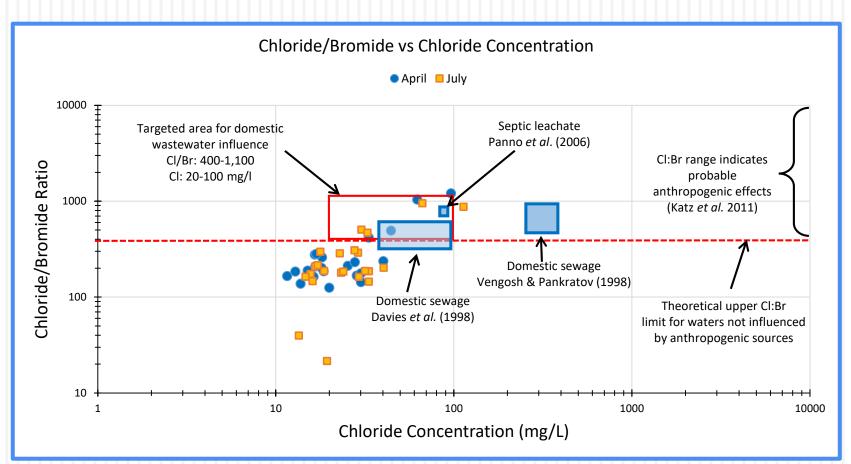
Site assessment survey

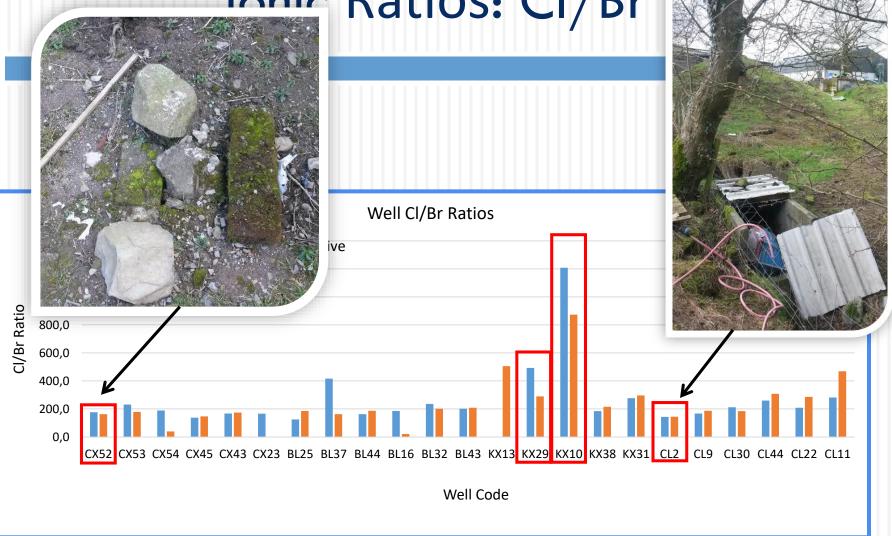
Well & Site	Accessment		
	T T		
Study Area			
Well Code Survey Date	-		
Sample Collection Date			
Household Name			
Site Address (See Map)			
Grid Reference			
Contact Phone Number			
Contact Email			
General S	te Details		
	Steep	Shallow	Flat
Slope	(>1:5)	(1:5-1:20)	(<1:20)
Site Boundaries	-		
Roads			
On Site Ground Conditions			
Comments			


One-off Sampling

Monthly monitoring & multiple tracer evaluation events

- Monthly monitoring of 24 wells
- Two monitoring events where potential human specific tracers were evaluated.



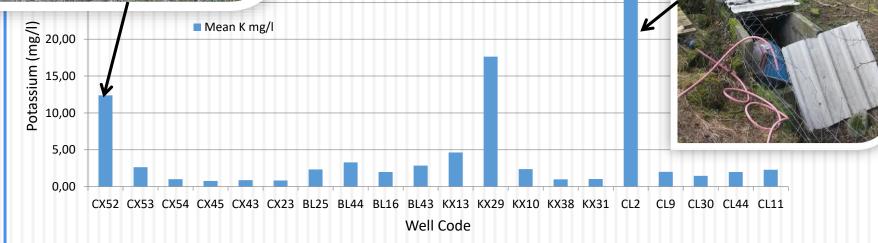


Ionic Ratios: Cl/Br

Theory: Distinct Cl/Br for different waters (e.g. natural GW 100-200, DWW 300-600*)

Lonic Ratios: CI/Br

Ionic Ratios: K/Na



Ily less than 3.0 mg/I K, with K/Na generally less then

0.4 indicative of contamination from natter e.g. farmyards.

(/Na lower (approx. 0.3)

onitoring Well Potassium Concentration (Mean)

Collaboration: Dr Donata Dubber

 Animals have a distinguishable faecal sterol profile based on an their diet & the bacterial community in their digestive tract

Sterol in animal cell membrane:

Cholesterol

Sterol common in plant material: 24-ethyl-cholesterol

Coprostanol

Cholesterol

24-ethyl-coprostanol

24-ethyl-epi-coprostanol

Collaboration: Dr Donata Dubber

		Ca	van				Clo	ogh		Ballymoney						
	CL 2	CL 9	CL 11	CL 44	KX 10	KX 13	KX 29	KX 31	CX 52	CX 43	CX 53	CX 54	BL 16	BL 25	BL 32	BL 44
Total sterol concentration [ug/L]	0.62	0.47	0.33	0.46	0.66	0.77	0.52	0.50	0.89	1.24	0.81	0.56	1.01	0.95	0.51	0.61
Human faecal stanol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Cholesterol	-	-	-	-	-	-	-	-	-	х	x	-	х	-	-	-
Herbivore faecal stanol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sheep faecal stanol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Plant sterols	x	х	х	х	х	х	x	х	х	х	x	х	х	x	х	x

- Very low concentrations (close to detection limit) so difficult to draw conclusions
- Requires filtration of large quantities of water (20l)
- Do negative results mean no impact or unsuitable method (*NB the presence of plant sterols)?


Artificial Sweeteners, Caffeine & PCPs

Collaboration: Dr David O'Connell Dr Martin Danaher

- Artificial Sweeteners are commonly used in modern diets as an alternative to sugar e.g. acesulfame, cyclamate, saccharin, sucralose.
- Pharmaceuticals and personal care products e.g. sulfamethoxazole, carbamazepine and <u>many</u> more!!
- Caffeine: only a small proportion is metabolised by humans

Applicability to a domestic scale?

Artificial Sweeteners/Caffeine/PCPs

Artificial sweeteners/Caffeine and PCP found in Irish groundwaters for the 1st Time !!
 Significant occurrence of Acesulfame in some wells

*	Pre	liminary	results
---	-----	----------	---------

		Cav	van		Kilkenny					Clo	gh		Ballymoney			
Compounds (µg l ⁻¹)	CL2	CL30	CL11	CL44	КХ4	КХ13	КХ29	кхзі	CX43	CX52	CX53	CX54	BL16	BL25	BL32	BL44
Acesulfame-K	+	+	+	+	+	0	+	+	+	+	0	+	0	0	0	0
Aspartame	+	+	+	+	+	+	+	+	+	+	0	+	+	+	+	+
Saccharin	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sucralose	0	0	0	0	0	+	+	0	0	0	0	0	0	0	0	0
Cyclamate	0	+	0	0	0	0	+	+	0	0	+	0	0	0	0	0
Caffeine	+	+	+	+	0	+	+	+	0	+	+	0	0	+	0	+
Carbamazepine	0	+	0	0	+	+	+	+	0	0	0	+	+	+	+	+
Sulfamethoxaz ole	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Conclusions

- Current lack of knowledge when associating contamination to a specific source on a domestic scale
- Varied suitability of tracers tested to date
- Requirement to evaluate various tracer techniques and develop a "toolbox" of methods to better understand contamination processes.
- Important implications in understanding and managing DWWTS, private wells, with obvious links on human health.

Thank you! Questions?

Acknowledgments

Bruce Misstear Laurence Gill Donata Dubber Kate Kilroy Vincent O'Flaherty David O'Connell Laura Brophy Martin Danaher

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

